AG真人

  • <tr id='p6sO8N'><strong id='p6sO8N'></strong><small id='p6sO8N'></small><button id='p6sO8N'></button><li id='p6sO8N'><noscript id='p6sO8N'><big id='p6sO8N'></big><dt id='p6sO8N'></dt></noscript></li></tr><ol id='p6sO8N'><option id='p6sO8N'><table id='p6sO8N'><blockquote id='p6sO8N'><tbody id='p6sO8N'></tbody></blockquote></table></option></ol><u id='p6sO8N'></u><kbd id='p6sO8N'><kbd id='p6sO8N'></kbd></kbd>

    <code id='p6sO8N'><strong id='p6sO8N'></strong></code>

    <fieldset id='p6sO8N'></fieldset>
          <span id='p6sO8N'></span>

              <ins id='p6sO8N'></ins>
              <acronym id='p6sO8N'><em id='p6sO8N'></em><td id='p6sO8N'><div id='p6sO8N'></div></td></acronym><address id='p6sO8N'><big id='p6sO8N'><big id='p6sO8N'></big><legend id='p6sO8N'></legend></big></address>

              <i id='p6sO8N'><div id='p6sO8N'><ins id='p6sO8N'></ins></div></i>
              <i id='p6sO8N'></i>
            1. <dl id='p6sO8N'></dl>
              1. <blockquote id='p6sO8N'><q id='p6sO8N'><noscript id='p6sO8N'></noscript><dt id='p6sO8N'></dt></q></blockquote><noframes id='p6sO8N'><i id='p6sO8N'></i>

                厦门大学海在菜汤里拨了一下洋与地球学院

                College of Ocean and Earth Sciences
                教师后台登看似一副漫不经心录
                学院〇办公系统
                研究生座位¤申请
                实验教学中心
                学院校〖友网
                教室查看/预约
                学院简介/年报
                科考船简报▂
                海洋科技博嘴巴物馆
                我院高树基教授课题组发表高水平论文揭示升温将以抑制厌氧氨氧化为代价刺激沉积物反硝化
                COE COE 2020/3/26 832 返回上页

                2020年3月23日,地学领域当时顶级期刊《自然·气候变化》(Nature Climate Change)在线发表了我院高树基教授课题々组的最新研究成果。论帅文题目为“Warming stimulates sediment denitrification at the expense of anammox”,揭示了气温升高将以抑制厌氧氨氧化为代价刺激沉积物反硝化,加剧全〇球变暖。

                人类活动引起的活性氮添加已经成为仅次于生物多样性危机的全球第二严重的生态◆环境问题,而近岸水域生态系统受到的干扰尤为严重。微生物介导的反硝化和厌氧氨氧化是生态系统中两个主要大好青年活性氮的移除通路,是地球系⌒统的自净过程。有趣的是反硝化以温室效应气体氧化亚氮(N2O)为中间变产物,而厌氧√氨氧化则不产生N2O,从而成为环境友好通♀路。陆海界面的沉积物是脱氮发生的热点场所,在未来全白影一声惨哼球暖化的背景下,脱氮微生物将直接受到升温的影响,其介导的脱氮速率量级变化将决张耀德怒极反笑定近海生态系统的活性氮储库大小,而反硝化与厌氧氨氧化对温度的差但他万万没有想到异性响应也将通过氧化亚氮释放反馈于气侯。

                基于同位素配对技术,氮循环课题组以九龙江河口及其潮间带等典型陆海关键带为研究区一着不慎域,通过沉积物温♀控培养实验,该研究首〓次开展了低纬度海陆界面沉积物氮移除过程的温丧失度响应研究,分别々获取了反硝化、厌氧氨氧化◥和N2O产生过程的温∴度响应曲线,得出各过程的Q10值,评估其温度敏感☆性;并进一扎着小辫步探讨气候变暖下全球范围不同纬度沉积物不同氮移除过程的响应及其气候反馈。研究发现,在低纬度沉积¤物中,升温直接刺激沉积物反硝化过程中N2O的释放,其Q10值显著高于反硝化和厌氧氨氧化过「程的Q10值(图1)。全球@ 集成数据揭示了任何纬度下反硝化过程最适温度(Topt)皆高于厌氧氨氧化过程的Topt(图2),表明反硝化细菌更能适应高温道环境,而厌氧氨氧化细菌则相对嗜冷;同时,两个脱氮过程的Topt与原位环境温度呈现一致的纬度分布模式,表明原位环境温度那么也在调控脱氮细菌温度响应过程中扮演重要角色;另一方面,反硝不会吧化与厌氧氨氧化过程的Topt与原位环境温度的差异随纬度降低而减小,尤其在低从容纬度区域,原位环境温度逼近反硝化过程的◆Topt,甚至已经超过厌氧氨氧化过程的Topt,这一不愧是烈火刀宗现象暗示在全球变暖的背景下,中高纬度沉积物反硝化细菌和厌氧氨氧化细菌仍处于可耐受☉温度范围】,而在低纬我期盼这一天度区域,些微璀灿錺栄的升温即可能抑制厌氧氨氧化细菌活性。综上,未来全球变暖将可能削弱厌氧氨氧化,促进反硝化,导致更多的氮移◤除并以N2O形式排放,从而加剧全球╱变暖。

                图1 反硝化过程中N2O释放,N2释放以及反硝化与厌氧氨氧化四个过程Q10值比较。D-N2O,D-N2,D和A分别表示反硝化介导的N2O释放,N2释放,反硝化和厌氧氨氧自得其乐化过程。叉叉和空心圆圈分别表示夏季和冬季数据。* p<0.05。

                图2 全球尺度上ㄨ不同纬度下反硝化过程Q10值,反硝化与厌氧餐宴已经出来了氨氧化过程最适温度及其环境原位温度的纬度变化。横坐标表示不同的研究文献及研▅究区域的纬度

                该研第五轻柔还没有这么沉不住气究工作由我院海洋氮循环课题组完成,获得了国家自然科学基金委“海洋氮循环及全球变化”创新研究群体和开始思考其中“水圈微生∞物驱动地球元素循环的机制”重大研究ω 计划等项目的资助,高树基教授为该创新群体的负责人。课题组2019届博士生从怀中掏出手枪谭萼辉为论文第一作者,高树基』教授为通讯作者。

                 论文来源:

                Tan Ehui, Zou Wenbin, Zheng Zhenzhen, Yan Xiuli, Du Moge, Hsu Ting-Chang, Tian Li, Middelburg J. Jack, Trull W. Thomas, Kao Shuh-ji*. Warming stimulates sediment denitrification at the expense of anammox. Nature Climate Change, 2020, DOI: 10.1038/s41558-020-0723-2.

                论文链接:

                https://www.nature.com/articles/s41558-020-0723-2